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Image ConvNet

Object Detection

● [x,y,width,height]
● confidence
● class label

Representation







Aleatoric and Epistemic Uncertainty
Aleatoric Uncertainty

● Due to noise inherent in the observations
○ E.g. over-exposure, motion blur

● Can not be reduced with more data.
● From Latin “alea” = “dice”

Epistemic Uncertainty

● Due to lack of knowledge
● Can be reduced by more data.



Aleatoric Uncertainty



Heteroscedastic Noise Term

What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? 
Alex Kendall and Yarin Gal, NeurIPS 2017.

Aleatoric Uncertainty



Epistemic Uncertainty



Epistemic Uncertainty

Okapi Rambutan



Epistemic Uncertainty



Epistemic Uncertainty

Flessenlikker



Epistemic Uncertainty

Flessenlikker

http://www.youtube.com/watch?v=EL4_qYRJI2M






Image credit: Hermann Blum et al. 
https://fishyscapes.com/

The Fishyscapes Benchmark: Measuring Blind 
Spots in Semantic Segmentation. 
Blum, Hermann and Sarlin, Paul-Edouard and 
Nieto, Juan and Siegwart, Roland and Cadena, 
Cesar. https://arxiv.org/pdf/1904.03215.pdf

https://fishyscapes.com/
https://arxiv.org/pdf/1904.03215.pdf
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The Open-Set Problem
Training under Closed-Set conditions. Deployment under Open-Set conditions.

● Carefully curated training (and test) datasets vs. the real world.
● Relevant for perception and action.



The Open-Set Problem
Training under Closed-Set conditions. Deployment under Open-Set conditions.

● Distribution of classes, conditions, appearance, imaging conditions (viewpoint, 
motion blur, focus, arrangement, …), noise, system dynamics, ... differs 
between training and deployment.



The Open-Set Problem
Training under Closed-Set conditions. Deployment under Open-Set conditions.

● out-of-distribution detection, anomaly detection, novelty detection





Fooling Networks

Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images (Nguyen et al., CVPR 2015)

Training on ImageNet, confidence > 99.6%



Adversarial Examples

Explaining and Harnessing Adversarial Examples (Goodfellow et al., ICLR 2015)





Intriguing properties of neural networks (Szegedy et al., 2013)

correctly classified + distortion = “ostrich” correctly classified + distortion = “ostrich”



Why should we care about uncertainty?

● Reliability, Safety, Trust
○ Know when the network does not know.
○ (and take appropriate action)

● Bayesian Fusion
○ Treat deep networks like any other sensor: fuse 

predictions with other sensors or prior knowledge 
in a Bayesian way.

● Active Learning
○ When uncertain, ask for help!

● Interpretability
○ More insights into the training process?

The Limits and Potentials of Deep Learning for Robotics. Sünderhauf, Brock, Scheirer, Hadsell, Fox, Leitner, 
Upcroft, Abbeel, Burgard, Milford, Corke. IJRR 2018.





According to data obtained from the self-driving 
system, the system first registered radar and 
LIDAR observations of the pedestrian about 6 
seconds before impact, when the vehicle was 
traveling at 43 mph. 

As the vehicle and pedestrian paths converged, the 
self-driving system software classified the 
pedestrian as an unknown object, as a vehicle, 
and then as a bicycle with varying expectations 
of future travel path. 

At 1.3 seconds before impact, the self-driving 
system determined that an emergency braking 
maneuver was needed …





Softmax-based Uncertainty
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Open-set Performance
(Uncertainty)

Robotic Vision
(Object Detection/Instance Segmentation)

Closed-set Performance
(Accuracy, mAP, etc.)

Softmax 
"probabilities"

0.03

0.01

0.94

0.02

Dog

Cat

Sheep

Bird
CNN < 𝜃, uncertain

> 𝜃, certain

Baseline (Hendrycks et al., 2016)

Slide courtesy of Dimity Miller



Image ConvNet

Representation Linear 
Classifier

Class Labels

Image ConvNet

Representation
Per-Pixel Class 

Probabilities

Are these scores “proper” probabilities?



Confidence = Probability?

ConvNet 

Softmax Output

0            1
Confidence scores



Softmax-based Uncertainty
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Open-set Performance
(Uncertainty)

Robotic Vision
(Object Detection/Instance Segmentation)

Closed-set Performance
(Accuracy, mAP, etc.)

Softmax 
"probabilities"

0.03

0.01

0.94

0.02

Dog

Cat

Sheep

Bird
CNN < 𝜃, uncertain

> 𝜃, certain

2. Temperature 
Scaling

1. Perturbations 
to input

Out-of-DIstribution detector for Neural networks 
(ODIN) (Liang et al., 2018)

Slide courtesy of Dimity Miller







Distance-based Uncertainty with Cross-Entropy Loss
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Open-set Performance
(Uncertainty)

Robotic Vision
(Object Detection/Instance Segmentation)

Closed-set Performance
(Accuracy, mAP, etc.)

0.03

0.01

0.94

0.02

Dog

Cat

Sheep

Bird
CNN

Multivariate Gaussians and Mahalanobis Distance (Lee et al., 2018)

M(x) = Uncertainty

Slide courtesy of Dimity Miller



Robotic Vision
(Object Detection/Instance Segmentation)

Distance-based Uncertainty with Metric Learning Losses
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Open-set Performance
(Uncertainty)

Closed-set Performance
(Accuracy, mAP, etc.)

Cross-entropy Loss
(softmax CNNs)

Contrastive Loss
(metric learning loss)

Contrastive Loss (Masana et al., 2018) Gaussian Kernel Loss (Meyer et al., 2019)

(Image: Horiguchi et al., 2017)

Slide courtesy of Dimity Miller



46Slide courtesy of Dimity Miller



“Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep 
Learning”. Nicolas Papernot and Patrick McDaniel

Deep k-Nearest Neighbors



Evaluating Uncertainty Techniques for Robotic Vision
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Unrealistic Open-set 
Conditions

Low Resolution 
Datasets Non-diverse Datasets

Dataset

CIFAR-10
SVHN
LSUN
MNIST

CIFAR-100

# Classes

10
10
10
10

100

Shafaei et al., 2018

Slide courtesy of Dimity Miller



Image credit: Hermann Blum et al. 
https://fishyscapes.com/

The Fishyscapes Benchmark: Measuring Blind 
Spots in Semantic Segmentation. 
Blum, Hermann and Sarlin, Paul-Edouard and 
Nieto, Juan and Siegwart, Roland and Cadena, 
Cesar. https://arxiv.org/pdf/1904.03215.pdf

https://fishyscapes.com/
https://arxiv.org/pdf/1904.03215.pdf




“Normal” Deep Learning
● CNN is a function f with parameters w 
● f(x) generates labels y 
● we seek the optimal parameters w (via 

stochastic gradient descent etc)

Bayesian Deep Learning

Bayesian Deep Learning
● Use a prior         on the network parameters
● Learning is finding the posterior over parameters
● not just one CNN, but a distribution over CNNs!



Bayesian Deep Learning
Classify a new input image x = inference:

Given the training data X,Y, and a new image x, 
obtain the distribution over labels y by ...

… averaging over the individual predictions of 
ALL possible network parameters w!

intractable!

intractable!
intractable!learning:

We need approximations!



Bayesian Neural Networks
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Output

Hidden Layer

Input

(Image: Blundell et al., 2015)

Posterior Intractable

Variational Inference

Approximate Posterior

Neural NetworkBayesian Neural NetworkApproximate Bayesian Neural Network

N(𝝁, 𝝈) N(𝝁, 𝝈) N(𝝁, 𝝈) N(𝝁, 𝝈)

N(𝝁, 𝝈)N(𝝁, 𝝈)

N(𝝁, 𝝈)

N(𝝁, 𝝈) N(𝝁, 𝝈)

Slide courtesy of Dimity Miller



Robotic Vision
(Object Detection/Instance Segmentation)

Bayesian Convolutional Neural Networks
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Open-set Performance
(Uncertainty)

Closed-set Performance
(Accuracy, mAP, etc.)

Monte Carlo (MC) Dropout (Gal et al., 2017)

(Image: Srivastava et al., 2014)

Slide courtesy of Dimity Miller



Dropout to the Rescue (again) 

 Neural Networks for Machine Learning, Geoffrey Hinton on Coursera in 2012

● Dropout as a Bayesian Approximation (Gal and Ghahramani, ICLR 2015)
● Yarin Gal’s PhD thesis
● NIPS 2016 workshop (www.bayesiandeeplearning.org)



Confidence = Probability?

ConvNet 

Softmax Output

0            1
Confidence scores

0            1
0            1

0            1
0            1

ConvNet 

Softmax Output
ConvNet 

Softmax Output
ConvNet 

Softmax Output
ConvNet 

Softmax Output





Uncertainty from Object Detection 
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Single Shot MultiBox Detector (SSD)
(Liu et al., 2015)

MC Dropout
(Gal et al., 2017)

MC Dropout SSD
(Miller et al., 2018)

(Image: Liu et al., 2015)(Image: Srivastava et al., 2014)

Slide courtesy of Dimity Miller



MC Dropout SSD (Dropout Sampling for Robust Object Detection in Open-Set Conditions. Miller et al., ICRA 2018)

Uncertainty from Object Detection 
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1.   Sample from MC Dropout SSD

1.

2.

3. 

4. 

5.

2.   Group samples into observations

 1.                2.

Slide courtesy of Dimity Miller



Uncertainty from Object Detection 
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3. Form final detections

1.

2.

4. Obtain class uncertainty for detections

H (      )

(      )H 

 ↓

 ↑

CERTAIN (KNOWN) 

UNCERTAIN 
(UNKNOWN) 

Slide courtesy of Dimity Miller

MC Dropout SSD (Dropout Sampling for Robust Object Detection in Open-Set Conditions. Miller et al., ICRA 2018)



Uncertainty from Object Detection 
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SceneNet RGB-D QUT Campus

Uncertainty from MC Dropout SSD reduces open-set errors.

SSD SSD + thresholding MC Dropout SSD
Slide courtesy of Dimity Miller

MC Dropout SSD (Dropout Sampling for Robust Object Detection in Open-Set Conditions. Miller et al., ICRA 2018)



Evaluating Uncertainty from Object Detection 
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Measure affinity between samples

Clustering algorithm 

Evaluating Merging Strategies for Sampling-based Uncertainty Techniques in Object Detection 
(Miller et al., 2019)

Slide courtesy of Dimity Miller



Evaluating Uncertainty from Object Detection 
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Evaluating Merging Strategies for Sampling-based Uncertainty Techniques in Object Detection 
(Miller et al., 2019)

Closed-set Conditions Distant Open-set ConditionsNear Open-set Conditions
PASCAL VOC Dataset Underwater DatasetCOCO Dataset

Slide courtesy of Dimity Miller



Evaluating Uncertainty from Object Detection 

64

Evaluating Merging Strategies for Sampling-based Uncertainty Techniques in Object Detection 
(Miller et al., 2019)

Basic Sequential Algorithmic Scheme (BSAS) clustering using Intersection over Union (IoU) and winning 
label (SL) as affinity measures.

Slide courtesy of Dimity Miller



Propagate uncertainty from Perception through the world model into decision making and actions?



Probabilistic Object Detection


